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We introduce a new spatially explicit model of forest dynamics. The model is constructed from submodels that predict an
individual tree’s growth, survival, dispersal, and recruitment, and submodels that predict the local availability of resources.
Competition is entirely mechanistic; plants interfere with one another only by depleting resources. We also describe maximum
likelihood methods for estimating each of the submodels from data collected in the field. Over the past two years, we collected
the necessary data for the dominant tree species in the Great Mountain Forest (Norfolk, Conn.). We report estimates of
submodels for each species, and show that the calibrated population dynamic model predicts the structure and dynamics of
natural forests. Finally, we contrast our model with the JABOWA-FORET family of forest models.
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of a northeastern forest simulator. Can. J. For. Res. 23 : 1980-1988.

Nous présentons un nouveau modele spatialement explicite de dynamique forestiere. Le modele est construit 2 partir de
sous-modeles qui prédisent la croissance des arbres individuellement, la survie, la dispersion, le recrutement et la disponibilité
locale des ressources. La compétition est enticrement mécaniste, les plantes compétitionnant entre elles uniquement par
I’épuisement des ressources. Nous décrivons aussi les méthodes pour estimer avec le maximum de probabilité chacun des
sous-modeles a partir des données collectées sur le terrain. Au cours des deux derniéres années, nous avons ramassé les
données nécessaires pour les espéces d’arbre dominant dans la “Great Mountain Forest” située 2 Norfolk au Connecticut.
Nous présentons des estimations des sous-modeles pour chaque espéce et nous montrons que le modele calibré de dynamique
de population prédit la structure et la dynamique des foréts naturelles. Finallement, nous comparons notre modele a la famille

de modéles forestiers JABOWA-FORET.

Introduction

Models of the dynamics of forests are perhaps the most
widely studied class of models in the ecological literature.
The vast majority of forest models are derived from JABOWA,
which was developed by Botkin et al. (1972) for northern
hardwood forests in New Hampshire. This model was later
modified and extended, primarily by H. Shugart and his col-
leagues, to forests ranging from boreal regions to the tropics.
Shugart’s earliest model was called FORET (Shugart and West
1977), and so we refer to the class of models derived from
JABOW as “JABOWA-FORET” models.

A JABOWA-FORET model consists of one or more spatial
cells, each occupying 0.01-0.1 ha. Each cell contains many
trees and the spatial positions of individuals within the cell
are unspecified. The model is constructed from submodels
that predict the growth, mortality, and recruitment of each
tree, and the resources (light, water, and nutrients) available
to each tree. The submodels are designed to be consistent with
available physiological information and to be calibrated pri-
marily using information already published in the forestry
literature. This feature may be viewed as a principal strength
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of JABOWA-FORET models and has contributed greatly to the
rapid extension of the approach to forests across the globe.

JABOWA-FORET models have been subjected to an extensive
series of tests and are capable of reproducing critical features
of natural forests. For example, the models are able to repro-
duce the observed altitudinal zonation in New Hampshire
(Botkin et al. 1972), the response of southern Appalachian
forests to chestnut blight (Shugart and West 1977), the changes
in species composition and population structure during succes-
sion (reviewed in Shugart 1984), and the response of forests
to post-Pleistocene climate change (Davis and Botkin 1985).

Nevertheless, the information necessary to estimate several
critical features of the models directly is simply not in the
published literature. These features are currently inferred from
the available information and assigned, or are omitted alto-
gether. Generally, the range of dynamic behavior that a model
is capable of exhibiting grows with the complexity of the
model. The blessing of complex models is that they can hope
to capture nature’s complexity. The curse of complex models
is that they can sometimes predict observed phenomena even
if they are fundamentally wrong. For example, the “Game of
Life” is a cellular automaton (model in which spatial cells
change state due to interactions with neighbouring cells) used
primarily by computer hobbyists. Although this model con-
tains many fewer parameters than JABOWA-FORET, it is capable
of universal computation. That is, the Game of Life is capable
of exhibiting any phenomenon that can be simulated on a
computer, including every phenomenon that has ever been
predicted by JABOWA-FORET.
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No one would suggest that the Game of Life is an appro-
priate model of forest dynamics because the rules governing
state transitions do not describe (at least in any obvious way)
processes known to be important in forests. A Game of Life
that could exhibit forest dynamics under some set of condi-
tions would provide neither explanation nor accurate predic-
tion of the response to novel conditions (such as the response
of forests to global climate change). The Game of Life is a
good mimic, but a poor teacher and prophet.

For these reasons, we initiated a project two years ago to
design a forest model from components that could be esti-
mated directly from data collected in the field, and to collect
the necessary information for the dominant tree species in a
forest in northwestern Connecticut: American beech (Fagus
grandifolia Ehrh.) (FAGR), eastern hemlock (Tsuga canaden-
sis (L.) Carr.) (TSCA), sugar maple (Acer saccharum Marsh.)
(ACSA), red maple (Acer rubrum L.) (ACRU), yellow birch
(Betula lutea Michx f.) (BELU), white ash (Fraxinus ameri-
cana L..) (FRAM), white pine (Pinus strobus L.) (PIST), black
cherry (Prunus serotina Ehrh.) (PRSE), red oak (Quercus
rubra L.) (QURU), and white oak (Quercus alba L.) (QUAL).
Although we attempted to start from scratch when formulating
this model, the result is properly viewed as an intellectual
descendent of JABOWA-FORET. Like JABOWA-FORET, our model
is mechanistic. Plant performance is a function of light, water,
and nutrient availability and competition occurs only through
resource depletion. Also like JABOWA-FORET, our model makes
population dynamic forecasts by predicting the fate of each
individual using growth, mortality, recruitment, and resource
submodels. The principal distinction between our model and
JABOWA-FORET is that our submodels were designed simulta-
neously with maximum likelihood estimators necessary to
estimate them from simple field measurements. Thus, the
submodels represent a compromise between what one would
like to know and what can be known with reasonable effort.
To date we have produced a calibrated model for forests of
seven of the 10 species (the above list minus PRSE, QURU,
and QUAL).

The -purpose of this paper is to report the design of our
forest model and to contrast it with the design of JABOWA-
FORET. Because our model is intended as a vehicle for extrapola-
ting from tractable field measurements to community dynamics,
an understanding of the model’s design requires an under-
standing of the associated empirical and statistical methods.
We thus provide an overview of the methods and estimated
submodels described in detail elsewhere (Ribbens et al. 1993;
Canham et al. 1994; S.W. Pacala et al.3; R. Kobe et al. 4). We
also review some initial tests and analyses of the model and
discuss these in relation to JABOWA-FORET models.

JABOWA-FORET model

Growth submodels

In a JABOWA-FORET model, individual trees have sigmoid
growth under ideal conditions, with a species-specific asymp-
totic size. An individual’s actual growth rate is determined
by multiplying its ideal growth rate by a series of species-
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specific “growth modifying functions” (GMF) that describe
the effects of resource availability and climate on growth.
Here, we focus solely on the light GMF, because we have
completed the calibration of our model only for the case in
which light is the sole resource causing within-stand variation
in performance.

Foresters have published extensive tables that place tree
species into categories of shade tolerance (i.e., Baker 1949).
Physiological ecologists have shown that photosynthetic rates of
shade-intolerant species typically increase slowly with increas-
ing light to a high asymptote while rates for shade-tolerant
species increase rapidly to a low asymptote (Bazzaz 1979).
In JABOWA-FORET models, each tree species is assigned to one
of two or three shade-tolerance classes, and each class is assigned
a different light GMF. Like photosynthetic responses, the
GMF for shade intolerants increases slowly to a high asymp-
tote and the GMF for shade tolerants increases rapidly to a
low asymptote (reviewed in Shugart 1984). It is thus assumed
that published shade-tolerance classification can be used to
predict the functional response of photosynthesis to light, and
that the functional response of growth to light is congruent
with the photosynthetic response. Moreover, it is assumed that
all species in the same shade-tolerance class share the same
growth response.

Mortality submodels

Mortality may be caused by either by density-independent
factors such as windstorm or fire or by density-dependent
factors such as shading or nutrient competition. Many
JABOWA-FORET models have detailed components, based on
field data, that govern mortality caused by density-indepen-
dent factors (see Shugart 1984). Resource-dependent mor-
tality, in contrast, is typically governed in a simple way. The
probability of mortality increases to an admittedly arbitrary
value of 0.368-year™! if an individual’s radial growth rate falls
to less than 1 mm-year (Shugart 1984) or less than 10% of
its growth rate under ideal conditions (Solomon 1986). The
same growth dependent mortality -function is used for all
species in a model.

Recruitment submodels

In most JABOWA-FORET models, juveniles are not produced
by the trees in the model. Rather, in each iteration, recruits
are drawn from a fixed list of species. These models contain
neither dispersal nor the important population dynamic feed-
back between abundance and recruitment. The selection of
recruits may be entirely random, or may be modified by fac-
tors such as the level of herbivory or the availability of micro-
sites that favor germination and establishment (Shugart 1984).
Several of the most recent versions (e.g., Smith and Urban
1988; Urban 1990) now include both “closed” recruitment
and dispersal. In these, some recruits are drawn from a fixed
list, while the others are produced by the trees in the model
and disperse among spatial cells.

Resource submodels

Light availability is governed by Beer’s Law, with each
individual shading all shorter individuals in the same spatial
cell (Shugart 1984). Usually, sunlight is assumed to come
from directly overhead.

SORTIE model

We call our model SORTIE, to acknowledge its descendence
from FORET (sortie and foray are synonyms) and its reliance
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on high-level sorting algorithms. In SORTIE, each tree occu-
pies a unique spatial position (there are no spatial cells), the
light and growth submodels account for seasonal and diurnal
movement of the sun, and all recruits are produced by the
trees in the model. Below we describe the estimation of the
submodels. Unless otherwise specified, all data comes from
the 2400 ha Great Mountain Forest in Norfolk, Conn. This
site is located at 400—500 m elevation in the northwest corner
of Connecticut.

Growth submodels

To estimate a growth submodel for a species, we simply
regress radial growth (taken from rings) against diameter and
measurements of local light, water, and nutrient availability.
Whole-season light availability is obtained by fish-eye pho-
tography (see Canham 1988a), water by time-domain reflec-
tometry (TDR), and nutrient availability (standing pools and
mineralization rates) by standard buried bag techniques. Again,
we focus in this paper solely on light. Although we have
collected and analyzed all of the nutrient and water data, we
have not completed the estimation of all components of the
model relating to nutrients and water.

Our measure of local light availability is Canham’s (19884a)
“general light index” (GLI). This index integrates knowledge
of the seasonal and diurnal movement of the sun, the mix of
diffuse and direct-beam radiation, and the local spatial distri-
bution of canopy openness (taken from a digitized canopy
photograph) into a single index of ‘whole season light avail-
ability (in units of percentage of full sun). We have confirmed
with arrays of quantum sensors that this index is correlated,
with slope not significantly different from one, to total photo-
synthetically active radiation in closed and “gappy” canopies
dominated by a suite of different species (Canham et al. 1994),

To date, we have estimated growth submodels for individ-
uals ranging in height from a few cm (seedlings) to 5 m. For
each of 50-60 individuals per species, we took a fish-eye
photograph directly above the individual (at the top and center
of the crown) in midsummer and harvested it in late fall. We
then regressed the width of the most recent annual ring against
GLI. We tried a series of regression models (S.W. Pacala et al.,
to be published, see footnote 3), and the best was

Py GLI ).
[11 Ring Width = Radius F——— + o

-P—2+ GLI

where P, is the asymptotic relative growth rate (ring width/
radius), P, is the slope of the relative growth rate at zero light,
and o is a normally dlstnbuted random variable with zero
mean and variance: 6% = C [Predicted Ring Width]P, where
C and D are estimated constants. Regl:esslons in which radius
was raised to an arbitrary (estimated) power or in which ring
width reached zero at nonzero GLI fit the data nonsignificantly
better for all species (likelihood ratio tests, S.W. Pacala etal.,
to be published, see footnote 3).

The functions for eight species in Fig. 1 (parameter values
in Table 1) show striking interspecific variation that does not
conform to the assumptions of JABOWA-FORET models. In par-
ticular, the most shade tolerant species (TSCA and FAGR) have
low-light radial growth rates that are lower than those of some
more intolerant species (i.e., BELU). Also, the conifers have
higher high-light radial growth rates that the angiosperms.
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HG. 1. Growth rate (ring width/radius per year (mm-mm!- year))
as a function of light level (log1o(GLI)) for eight species. The curves
were produced by eq. 1, using the parameter values in Table 1.

Although the data indicate that ring widths of saplings are
proportional to radius at any given light level, this relationship
cannot extend to canopy trees. At present, we assume the
constant area increment law in the model (see Phlpps 1967):
the cross sectional area of a ring cannot exceed 63 cm? (a ring
width of 2 mm for a tree: 100 cm in diameter). Radial growth
is given by the smaller of the ring widths predicated by eq. 1
and the constant area increment law.

To translate radial -growth rates into height growth, we
regressed height against diameter using samples of 50—100 indi-
viduals of each species (S.W. Pacala et al., to be published,
see¢ footnote 3). These ranged in height from a few cm to
canopy height. Again, we tried a series of regression equa-
tions, and the best was

[2] Height (m) = |:1 - exp( iDlameter (cm))] + O

where A is the asymptotic height, S is the slope of the function
at zero diameter and, as before, o is a normal random variable
with zero mean and variance that increases as a power law
with the predicted mean. The parameter estimates in Table 1,

to some extent, explain the counterintuitive interspecific vari-
ation among the growth functions in Fig. 1. For example,

TSCA will not overtop the shade intolerants at high light
because of its small value of S. However, the overall pattern
is still at odds with the assumptions of JABOWA-FORET; TSCA
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TABLE 1. Parameter estimates and 95% confidence limits

1983

FAGR TSCA ACSA BELU ACRU FRAM PIST
P 0.152 0.229 0.125 0.154 0.167 0.181 0.230
(0.183, 0.132)  (0.262, 0.201)  (0.149,0.105) (0.181, 0.125)  (0.222,0.127)  (0.252, 0.126)  (0.296, 0.188)
P 0.075 0.051 0.159 0.150 0.027 0.030 0.019
(0.115,0.052) (0.071,0.036) (0.227,0.112) (0.227, 0.105) (0.040, 0.018)  (0.039, 0.023)  (0.026, 0.015)
A 34.6 29.6 24.8 , 232 25.7 325 384
427, 29.5) (39.0, 23.9) (27.5,22.2) 25.1, 21.1) (27.9, 23.3) (35.2, 29.9) (44.5, 33.4)
S 1.06 0.73 1.87 1.89 189 . 1.69 1.00
(1.12, 1.02) 0.77, 0.69) (1.98, 1.78) (2.01, 1.76) (2.01, 1.79) (1.79, 1.58) (1.06, 0.93)
U 4.27 5.74 8.84 3.13 7.66 15.80 4.70
(5.22, 3.59) (7.08, 4.64) (11.16, 7.03) (3.68, 2.67) (8.99, 6.54) (20.84, 11.36) (5.92, 3.75)
Vv 0.001 0.250 1.58 0.638 1.06 1.90 0.44
(0.068, 0.000)  (0.349, 0.154) (1.80, 1.38) (0.850, 0.460) (1.19, 0.94) (2.16, 1.69) (0.59, 0.29)
h (<1074 19.57 59.91 7.44 0.00 3.63 032" 1.03
(34.70, 8.01) 69.34, 50.75) (11.49, 4.75) (0.01, 0.00) (4.77, 2.65) (0.52, 0.03) (191, 0.37)
E; 2.5 275 0.92 092 0.92 092 0.92
(2.77, 2.40) (2.77, 2.40) . (0.93, 0.91) (0.93, 0.91) (0.93, 0.91) (0.93, 0.91) (0.93, 0.91)
0.152 0.100 0.107 0.109 : 20.108 0.095 0.087
(0.166, 0.138) = (0.111, 0.089) (0.118, 0.097)  (0.122, 0.096) (0.115,0.101)  (0.104, 0.085)  (0.097, 0.077)
0.664 0.846 0.580 0.539 0.488. 0.319 0.413

D

(0.726, 0.602)

(0.891, 0.801)

(0.623, 0.537)

(0.611, 0.467)

(0.546, 0.430)

(0.380, 0.258)

(0.457, 0.369)

Note: Upper and lower confidence limits are given in parentheses. See the text for an explanation of symbols in the first column with the eéxception of W (canopy radius

(m)./ DBH (cm)) and D (canopy thickness (m) / tree height (m)).

and FAGR have slower height growth in deep shade than
several of the more intolerant species (i.e., BELU).

Mortality submodels

As in JABOWA-FORET, resource-dependent mortality is
modeled: indirectly, through an effect of growth rate on the
probability of mortality. The difficulty in estimating mortality
submodels is that mortality rates are low, and so an enormous
sample would be required to regress mortality rate against
growth rate using standard techniques (binomial regression).
However, together with R. Kobe, we have developed an alter-
native that requires growth rates from a sample of only 35-
50 standing dead individuals and 35-50 live individuals, and
a count of live and dead individuals along transects (R. Kobe
et al., to be published, see footnote 4). Let the distribution of
growth rates in a site be X(g), and the mortality function be
M(g), where g is growth rate. Then, the distribution of growth
rates for standing dead individuals is

X(g)M
Bl "n(® = :—‘g‘)—(@—

[ Me)x(g)dg

—o0

and the distribution for live individuals is
[1 - M(@)lX(g)

4] Yi(g) = =
J 11 - M@x(e)de

. —o0

We assume a flexible distribution for X(g) (usually a y-density)
and a functional form for M(g) and then derive the conditional
distributions Yp(g) and ¥; (g) using eqs. 3 and 4. We then
derive a maximum-likelihood estimator from these conditional
distributions and the binomial distribution (for the transect
counts). This estimator provides estimates and confidence
limits for the parameters of the mortality submodel, M(g), and
the parameters of X(g).

The reason that the method works is that the sample of dead
individuals will contain more low growth rates that the sample
of live individuals, if the probability of mortality increases as
growth rate decreases. The estimator finds the parameter values
of M(g) that optimally reshape X(g) into ¥; (g) and Yp(g).

When collecting standing dead. individuals, R. Kobe et al.
(to be published, see footnote 4) restricted the sample to indi-
viduals that had died within 2 or 3 years, using a series of
characters. The function M(g) gives the probability of mor-
tality over this length of time.

R. Kobe et al. (to be published, see footnote 4) tried a series
of different functional forms for M(g), and the best was

[51 M(g) = exp(~U[Average Ring Width (mm))]")

where U and V are constants and average ring width is the
arithmetic average over the previous 5 years. Better fits were
obtained from a 5-year average than from any other interval
between 1 and 10 years. R. Kobe et al. (to be published, see
footnote 4) also considered two-parameter functions in which
mortality approached a value less than one at g = 0 and func-
tions that included W/R® as an index of growth, where z is an
estimated constant, W is average ring width, ‘and R is stem
radius. The former provided poorer fits and the latter yielded
nonsigniﬁcantly better fits and estimates of z close to zero for
each species. Because ring width increases with radius at any
given light level (eq. 1), eq. 5 indicates that 11ght-dependent
mortality decreases with size.

In contrast to the assumption in JABOWA-FORET models,
large interspecific variation among estimated mortality func-
tions is evident in Fig. 2 (R. Kobe et al. (to be published, see
footnote 4), parameter values in Table 1). These functions
must be evaluated in the context of the growth functions. For
example, the fact.that the shade-tolerant species, ACSA, has
relatively high mortality at low rates of growth does not mean
that this species has high mortality at low light.. This is
because ACSA has-a high rate of growth at low light. The
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FIG. 2. Probability of mortality as a function of growth rate (average
ring width (mm) over the previous 5 years) for seven species. The
curves were produced by eq. 5, using the parameter values in Table 1.

order of mortality rates for 2 cm diameter saplings at 1% light
(GLI) is FAGR < TSCA < ACSA < BELU < PIST < ACRU <
FRAM, which agrees well with conventional wisdom
(R. Kobe et al., to be published, see footnote 4).

R. Kobe et al. (to be published, see footnote 4) also pro-
duced replicate estimates for four species (FAGR, ACSA,
BELU, and FRAM) from a site in Michigan, as well as two
species (FRAM and ACSA) from a Connecticut site with a
very different soil (limestone parent material instead of
granite). The estimates for these sites agree remarkably well
with the functions in Fig. 2, suggesting that trees have a
highly deterministic starvation response. The one exception
is that ACSA’s function indicates greater shade tolerance on
calcareous soil. This result is perhaps responsible for the
dominance of ACSA on calcareous soils in the region
(R. Kobe et al., to be published, see footnote 4).

Like the mortality submodels of JABOWA-FORET, our mor-
tality submodels also include purely random disturbance. Each
individual has a constant probability of dying from density-
independent factors, in addition to its growth-dependent prob-
ability of mortality. We also have developed subroutines that
create catastrophic disturbances (windthrow or fire) with user-
specified frequencies, severities, and sizes. We have not, to date,
developed species-specific functions for density-independent
disturbance (e.g., owing to differential susceptibility to fire
or windstorm), although it would be possible to do so given
appropriate data.

Recruitment submodels

Our recruitment submodels predict the “seedling shadow”
of an individual tree: the density of seedlings produced by the
tree as a function of the size of the tree and the distance from
the tree. We, together with E. Ribbens, have developed a
maximum likelihood method that permits one to estimate a
recruitment submodel for each species from a map of adults

in a stand and a census of seedlings in square-meter quadrats -

placed within the stand (Ribbens et al. 1993).
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Suppose that the mean density of seedlings (number per
square meter) produced by a tree falls off with distance as

[6] Seedling Density = F(DBH)?exp(~h distance®)

where F and h are constants. Diameter at breast height (DBH)
is raised to the second power and distance to the third, because
these numbers provided better fits than any other integers
from 1 to 4 (Ribbens et al. 1993). Now, let d;; be the distance
between the ith tree and the jth seedling quadrate. The fotal
density of seedlings expected in the jth quadrat (N;) is then

q
[71 N; = ), FD}exp(-hd5;
i=0

where D; is the DBH of the ith conspecific tree and q is the
number of conspecific trees in the stand.

Ribbens et al. (1993) developed a maximum likelihood esti-
mator in which the mean of a Poisson random variable for the
Jjth quadrat was N}, and used this method to estimate values
and confidence limits of # and F for each species in a range
of sites (parameter values in Table 1). The method works by
finding values of F and A that bring the seedling shadows of
the mapped trees into optimal agreement with the spatial
distribution of conspecific seedlings.

Although the distance decay of the seedling shadow is
strongly conserved for each species across replicate samples,
the total number of seedlings produced does vary substan-
tially among sites and years, presumably because of masting
and stochastic variation in pre-establishment mortality (Ribbens
et al. 1993). The estimated submodels show that mean dis-
persal distance decreases with the -degree of shade tolerance.
The mean dispersal distances (m) are: TSCA, 4.1; FAGR, 5.9;
PRSE, 8.0; ACSA, 8.2; QUAL, 8.6; QURU, 8.7; ACRU, 10.4;
PIST, 15.8; FRAM, 23.3; BELU, >50.0 (Ribbens et al. 1993).

Resource submodels

To be useful in a population dynamic model, a resource
submodel must predict the same measure of local resource
availability that is used to predict growth. We selected GLI
as an index of local light availability in the growth submodel,
rather than some simpler measure, because numerous studies
have shown that the growth of saplings in nature depends
critically on nonvertical shading and illumination. In Connect-
icut, a canopy gap located 25 m north of a sapling has no
effect, but a gap located 25 m south may have a dramatic
effect (see Canham 19884). Moreover, subtle changes in the
timing, number, and placement of gaps about a location appar-
ently alter the competitive ranking of shade-tolerant species
during regeneration (Canham 1988b). Thus, the problem in
designing a light submodel is to predict the GLI for a location
from the sizes, locations and species identities of trees in the
vicinity.

We, together with A. Finzi and D. Burbank, developed this
submodel in five steps (see Canham et al. 1994). First, we
developed regression equations for each species that give
canopy diameter and depth from DBH (parameter values in
Table 1). These equations supplement the DBH-height equa-
tions described earlier. Second, we determined the locations
and diameters of all trees in six circular stands (50 m diameter).
These stands were chosen to provide a wide range of local
species composition. We used the regression equations to
construct a three-dimensional map of the canopy in each stand
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(assuming cylindrical crowns). Third, we took a series of
fish-eye photographs at several heights throughout each stand.
After digitizing the photographs, we divided each into a series
of small regions with different zenith and azimuth angles and
determined the percentage of sky visible in each region (canopy
openness of the region). Fourth, consider the linear path cor-
responding to the mean zenith and azimuth angle of a region.
We used the canopy maps to determine the number of crowns
of each species intercepted by the path, and the length of path
occupied by each species. This provided a data set with several
thousand lines, each containing a percentage of sky visible
along a path, and the numbers and path lengths of each tree

species along the path. We then developed a maximum-likeli-

hood estimator, based on the B-distribution, to provide estimates
and confidence limits for species-specific light extinction coef-
ficients. We selected estimates based on the number of crowns
intercepted, rather than the path length intercepted, because
the former provided better fits than the latter. Thus, a crown
of species i reduces canopy openness by the factor exp(-E),
where E is the light extinction coefficient for the species
(estimates in Table 1). Finally, to validate the method, we
mapped a single larger stand (2 ha) with a heterogeneous
species composition, and measured GLIs at a series of loca-
tions. We then calculated GLIs using the regression equations
and estimated light extinction coefficients, and showed that these
predict the actual values (Canham et al. 1994).

Note that there are only two different light extinction coef-
ficients in Table 1. The most shade tolerant species (FAGR and
TSCA) have a higher coefficient than the remaining species.
Although the method can yield separate estimates for each
species, pooling species into the two classes in Table 1 provides
a nonsignificantly poorer fit (likelihood ratio test, Canham et al.
1994). Also, although the extinction coefficients in Table 1
may appear small, it must be remembered that these are averages
for trees in closed canopy and that they predict measured
values of GLI.

The shade cast by an individual tree is determined both by
the tree’s crown geometry and its light extinction coefficient.
In order of decreasing shade cast: TSCA > FAGR > ACSA >
BELU > ACRU > PIST > FRAM (Canham et al. 1994). This
order confirms Horn’s (1971) result that the shade cast by an
individual increases with the degree of shade tolerance.

The population dynamic model

The model is written in C and contains the diameter, species
identity, and x- and y-coordinates of every individual. At the
beginning of each iteration, SORTIE uses the resource sub-
models to determine the resources available to each indi-
vidual. For example, to determine the amount of light avail-
able to an individual, the model computes a GLI from a
fish-eye photograph taken above the individual. The proce-
dure for calculating GLIs relies on efficient algorithms to
identify trees that will shade a location, and to compute the
set of zenith and azimuth angles shaded by each tree. SORTIE
then uses the local resource availabilities together with the
growth submodels to grow each plant, and uses these growth
rates together with the mortality submodels to determine each
plant’s probability of survival. After pseudorandom coin tosses
determine which plants are killed, SORTIE uses the recruitment
submodels to determine the number and spatial positions of
all recruits produced by every tree. This completes one inter-
action. Each iteration has a duration of 5 years (forecasts the
state of the forest 5 years into the future). By repeatedly

iterating the model, we can forecast long-term changes in the
abundance, age and size structure, and spatial distribution of
all species. :

Both speed and memory place limits on the spatiotemporal
scales that SORTIE is able to simulate. Because the model
tracks the state of every tree, the memory limit is determined
primarily by the number of trees that can be accommodated. The
record for an individual tree occupies approximately 20 bytes.
Assuming approximately 6000 individuals greater than 5 years
of age per hectare, each megabyte of memory can store the
records for between 8 and 9 ha. In SORTIE, over 90% of the
execution time is required to calculate GLIs. JABOWA-FORET
models are typically much faster because they assume that
light comes from a single direction (usually vertical). A PC
operating at 0.2 megaflops executes a simulated year of
SORTIE at a rate of approximately 1 h-km™2 An IBM
RS 6000 operating at approximately 20 megaflops requires
roughly 0.01 h-km™ year ™.

A note on the recruitment submodels in the current version

The current version of the model does not use estimates of
F described in the recruitment submodels section for two
reasons. First, we do not yet have a sufficiently long time
series of values to characterize the high temporal variability
in reproduction. Three to 5 years typically separate mast years,
and we currently have only 2 years of data. Second, because
the time step in the model is 5 years, juveniles that enter the
plot are actually 5 years of age. We cannot reliably use our
method of estimating mortality submodels for trees less than
5 years of age. Because small individuals may disappear rapidly
after dying (or be consumed), the sample of small standing-
dead individuals in a location is likely to be highly biased.
Thus, we currently have no reliable way of converting esti-
mates of F into numbers of 5-year-old juveniles. What is
needed is a growth-dependent mortality function for ages 1-5.
Fortunately, this interval is short enough to be covered by an
experiment and the necessary experiment is in progress. We
expect to be able to produce mortality submodels for 1-5 year
olds within 3 years.

The problem of the unknown F-values is perhaps not overly
severe because preliminary sensitivity: analyses indicate that
the model is less sensitive to changes in F than to changes in
the other parameters. We currently set values for F in two
ways. First, the published literature contains information on
seed production and survival through 5 years of age of some
of the species. We choose values that are consistent with this
information. Second, we can adjust the values of F to yield
average densities of 1-5 year olds as reported in the literature.
Fortunately, these two methods are generally in close agree-
ment. In the preliminary test described below, F-values were
chosen so that the relative fecundities of trees of identical DBH
were 1 (FAGR) : 5-(BELU and PIST) : 3 (all other species).
The lower fecundity of FAGR reflects the predominantly clonal
reproduction (root sprouting) of this species in Great Moun-
tain Forest. The higher fecundities of BELU and PIST reflect
the high rate of seed production of these species (Houle and
Payette 1990; Wendel and Smith 1990).

A preliminary test of the model

Two difficulties in testing a forest simulation model are
that successional return to old-growth forest takes a long time,
and that species composition during succession depends on
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the initial composition of a disturbed site and its surfoundings.
Because of the lack of long-term historical data on succession,
one is left with three alternatives for testing the model: (i) an
historical reconstruction of a forest (based:on old stumps,
tip-up mounds,: and: the pollen record), (iiy data from a suc-
cessional sere, or (iif) data from a short chronosequence. Here,
we focus on the second two alternatives. N

We selected the test data sets as follows. We reviewed
studies that report the compdésition of old-growth forests in
locations similar to our Cennecticut sites (sites in' southern
New England, New York, and Pennsylvania reported in Hough
and Forbes 1943; Nichols 1913; Potzger 1946): These studies
confirm that there are basically two types of old-growth:
hemlock-beech dominated old-growth and white pine domi-
nated old-growth; and that the species composition of each
type is conserved across the region. We computed the arith-
metic average of the species compositions reported for each
type. The average compositior for hemlock-beech old-growth
is given by the open bars in Figs. 34 and'3¢; and the average
composition for white pine 6ld-growth is given by the open
bars in Fig. 4. In Figs. 3 and 4, the “other” category contains
primarily QURU, QUAL, and PRSE. Because we have not
yet completed estimating all submodels for these species, we
normalized the species composition of the FAGR-TSCA-
ACSA-BELU-ACRU-FRAM-PIST community (open bars)
to sum to one. S ;

‘We then selected the two studies reporting species compo-
sition both initially (before disturbance) and during succes-
sion. Hough and Forbes (1943) report species compositions
of stands 40-50 years after clear-cutting of hemlock—beech
old-growth in Pennsylvania. Similarly, Kelty (1984, 1986)
reports species compositions of stands in the Harvard Forest
{central Massachusetts) 40—50 years after they were leveled
by the 1938 hurricane. Although the Harvard Forest sites were
not technically old-growth, they had been abandoned in the
early 19th century and had recovered a species composition
identical to the hemlock~beech old-growth by the time of the
hurricane (Kelty 1984, 1986). The compositions of the two
successional stands were very similar, and we averaged them
to. produce the open bars in Fig. 3b.

To :augment these studies, we also selected a series that
report .compositions and basal areas of successional stands
located in or near the Great Mountain:Forest (where the model
was calibrated). Because none of these reports the initial species
composition, we report only the total basal area (m*-ha™') at
each successional stage (Fig. 3d). Our hope-is that total basal
area is less sensitive to initial condition than is species compo-
sition. The basal areas in Fig. 3d come. from the following
sources: 50 years (average of stands in northwestern Connecticut
and the Harvard forest; Kelty 1984; Stephens and Waggoner
1980; G.R. Stephens, unpublished), 65'and 95 years (average
of stands in the Great Mountain Forest; Stephens and Hill 1971;

I
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FIG. 4. Predicted (shaded bars) versus actual (open bars) species
composition -with periodic large-scale disturbance. There were four
0.25-ha catastrophic disturbances in the .1-ha plot during the 1000-
year run. The initial composition was the same as in Fig. 3. See text
for additional information.

G.R. Stephens, unpublished), 135 years (average of stands in
Catlin Woods in northwestern Connecticut; Kelty 1984), and
143 years (average of stands in Catlin ' Woods; G.R. Stephens,
unpublished). Finally, the “virgin” basal area is the average
for hemlock-beech old-growth reported in Hough and Forbes
(1943) and Potzger (1946).

We tested the model’s ability to predict these data with two
kinds of simulations. First, we simulated a 4-ha area with an
initial species composition equal to the actual average com-
position of hemlock—beech old-growth (open bars in Fig. 3a,
but minus the other category). The composition in the central
hectare of the modeled stand is given by the shaded bars in
Fig. 3a. We then clear-cut this central hectare, killing all
canopy trees and 0, 25, 50, 75, or 100% of saplings. Because
the different rates of sapling mortality during clear-cutting
produced qualitatively similar results (with marginally more
rapid return to old-growth composition for the lower rates),
we report only the results for a rate of 75%. At 50 years,
the central clear-cut contained the composition shown by the
shaded bars in Fig. 3b, and at 1000 years by the shaded bars
in Fig. 3¢. The composition was essentially unchanged for
500 to 1000 years. Note the close correspondence between
the predicted (shaded) and actual (open) compositions. The
loss of FRAM, ACRU, and ACSA is, perhaps not overly
serious because the small simulated plot contained only one
or two trees of these species initially. Also, the only distur-
bances in the simulation were single-tree gaps created by the
random deaths of canopy trees. In contrast natural stands
inevitably have experienced some multitree disturbances during
their development.

The temporal sequence of total basal areas in the central
hectare of the simulation is shown by the circles in Fig. 3d.
The point opposite “virgin” corresponds to year 1000, but
total basal area was essentially unchanged from years 300 to
1000. Again, there is obviously close correspondence between
the predicted and actual pattern. The discrepancy between
predicted and actual values of peak basal area may reflect an
artificial lack of lateral inhibition among canopy trees in the
model (recall that fish-eye photographs are taken in the model
only directly above the center of each tree’s crown).

We replicated the above simulation three times with dif-
ferent random number seeds. The results of the replicates were
virtually identical to the results in Fig. 3.

_The second group of simulations were designed to deter-
mine if the model:can predict the composition of white pine
dominated old-growth. We simulated 1-ha stands with the same
initial composition as in Fig. 3 (hemlock-beech old-growth),
but included four 0.25-ha catastrophic disturbances that occurred
at random times and locations during the 1000-year runs. As
before, the predictions of replicate runs were similar, and so
we include the results of only one run (Fig. 4). Note that the
model correctly predicts the dominance of PIST and the sub-
dominance of TSCA and FAGR.

Discussion

This study shows that it is possible to calibrate a mecha-
nistic forest-simulation model with currently available levels
of funding. The result predicts coexistence without relying on
an unchanging list of species from which recruits are drawn.
It predicts the observed composition of old-growth commu-
nities, with and without periodic catastrophic disturbance.
Finally, it predicts observed successional change.

The community-level predictions of the model must be .
caused by interspecific variation among the estimated sub-
models. Several interspecific trade offs are evident in Table 1
and Figs. 1 and 2. A traditional ordering of the species by the
degree of shade tolerance is: (FAGR, TSCA) > ACSA > (BELU,
ACRU) > (FRAM, PIST). As shade tolerance defined by this
order increases: (i) mean dispersal distance generally decreases
(Ribbens et al. 1993), (ii) survival at low light generally in-
creases (R. Kobe et al., to be published, see footnote 4;
S.W. Pacala et al., to be published, see footnote 3), (iii) shade
cast by an individual tree generally increases (Canham et al.
1994), (iv) the rate of height growth at high light generally
decreases (S.W. Pacala et al., to be published, see footnote 3),
and (v) rates of height growth at low light, or rates of radial
growth at any light generally neither monotonically increase nor
decrease (S.W. Pacala et al., to be published, see footnote 3).

The challenge now is to determine how these relationships
among the “strategies” of species determine the predicted
community-level patterns. We are approaching this problem
both through formal sensitivity analysis and by studying the
modeled community the- way that an empirical scientist studies
a forest. We make measurements, formulate hypotheses (often
in the form of simple analytically tractable models), and test
the hypotheses with simulated experiments. Though this effort
is still in its early stages, it is already clear that no source of
interspecific variation has little effect on the predicted com-
position and structure of the forest. Whenever we give the
species a common growth, mortality, or recruitment submodel,
predicted community-level patterns bear little resemblance
to actual patterns (Ribbens et al. 1993; Canham et al. 1994;
R. Kobe et al., to be published, see footnote 4; S.W. Pacala
et al., to be published; see footnote 3). The implication is that
theoretical and empirical studies should focus on ensembles
of trade offs such as those in i~v above, to determine how
interactions among trade offs shape community dynamics and
structure.

We again emphasize that SORTIE has much in common
with JABOWA-FORET. Once could view SORTIE as a version of
JABOWA-FORET that includes explicit spatial positions of trees,
a more complex model of light availability, purely closed
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recruitment (all recruits produced by trees in the model), and
directly calibrated submodels of growth, mortality, and dis-
persal. Both models are apparently able to- predict. the
dynamics and structure of real forests. JABOWA-FORET can
undoubtedly do so under a broader range of conditions than
SORTIE because it has been under development for a longer
period of time and because it includes features such as nutrient
cycling, the effects of climate, and herbivory.

Still, some of the trade offs evident in i—v above either
contradict assumptions of JABOWA-FORET or are not included
in JABOWA-FORET. One example is that BELU actually grows
faster-than FAGR and TSCA under low-light levels and yet
has lower survivorship at low light than either species. We
suspect that this property is an essential reason for BELU’s
position as the third most abundant species in hemlock—beech
old-growth. A second example is that the most shade tolerant
species in SORTIE have the shortest dispersal. We have written
a graphical display for SORTIE that includes a map showing
the location, size, and species identity of each tree. Because
of short dispersal, the spatial distribution of TSCA and FAGR
produced by the model exhibits the pronounced within-species
clumping and between-species spatial segregation so evident
in natural stands. Theoretical work (Pacala 1986) shows that
this phenomenon promotes coexistence. By reducing the num-
ber of between-species contacts, short dispersal reduces the
mean level of interspecific competition. We suspect that this
mechanism is an essential reason for the coexistence of TSCA
and FAGR in old-growth forest. ,

Clearly, it is not enough for models to be merely predictive.
If it were, the Game of Life would suffice as a general model.
For over 20 years, JABOWA-FORET models have generated sig-
nificant insights (i.e., Bormann and Likens 1979a, 1979b).
What is more, these models are of proven applied value. But
only by tightening the coupling between forest models and
empirical studies, will we arrive at an explanatory and pre-
dictive theory.
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